A Reproduced Copy

OF

(NASA-CR-174151) & FADLT-TOLERANT N84-72600

- SCHEDULING PROBLEN (Lllinois Univ.). 26 p

gnclas
0061 12118

Reproduced for NASA
by the
NASA scientific and Technical Information Facility

FFNo 672 Aug 65

U~ /707 MASTER COPY
UIUCDCS~-R-80-1010 Do Not Remove
A FAULT-TOLERANT SCHEDULING PROBLEM
by
Arthur L. Liestman
Roy H. Campbell
February 1980

: Property of
COLLEGE OF ENGINEERING DOCUMENTS OFFICE

UNIVERSITY OF ILLINOIS
112 ENGINEERING HALL
URBANA, ILLINOIS 61801

UILU-EN: 80 1709

UIUCDCS-R-80-1010 °

A FAULT-TOLERANT SCHEDULING PROBLEM
by

Arthur L. Liestman
Roy H. Campbell®’

February 1980

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, ILLINOIS 61801

This project is funded in part by NASA Grant NSG 1471.

Page 1

1 Introductionm.

A real-time system provides a service which meets a set of specifications
including real~time constraints. It is desirable to guarantee reliability in
a real-time system. Reliability is a measure of how well the system conforms
to 1its specifications. One technique used to improve reliability is fault-
tolerance which incorporates redundancy into the system design.. This redun-
dancy 1s combined with error detection and error confinement techniques to
prevent isolated failures from causing system failure. A deadline mechanism
[Campbell, et al., 79] has been proposed to provide fault-tolerance in real-
time systems. In this mechanism two independent algorithms are provided for
each service subject to a déadline. An algorithm is preéented here which

produces a fault-tolerant schedule for such a real-time system.

Consider a scheduling proﬁlém in which a time-shared single~processor
computing system is .to execute a set of jobs each of which consists of a
sequence of periodic requests. That 1s, ‘each job ©periodically demands a
- response within a certain time interval. A further property of the proposed
system is that each job’s request period is a multiple of the next smallest

request period. Such a system 1is termed simply periodic. Let Ji{Jl, Jz, ey

Jé} denote a set of jobs with periodic requests. Ti denotes the request

period, Pi denotes the computation time of the primary, and Ai denotes the

computation time of the alternate for job Ji i=1, 2, ceey, T. Assume that

A1 < Pi for i=1, 2, eesy, T The level of the job Ji is 1. The jobs are

ordered such that m,T,= T +1 for some positive integer m, » 2 for i=1l, 2, ...,

i{ 71 i

. r-l.

Page 2

The degdline mechanism provides two algorithms for each service. The
primary algorithm produces a good quality service but is subject to timing
errors which are precisely defined in [Campbell, et al., 79]. The alternaté,
algorithm produces an acceptable response and by definition is not subject to
timing errors. The response to a request can consist of the completed execu-
tion of either the primary or the altermate algorithm. The best schedule is
obviously one that successfully executes the primary algorithm for each

request, but due to possible primary failures this is not always possible.

Given this information about the set of jobs a schedule for the execu-
tion of the responses can be specifiéd. . The deadline of a request is the time
at which the next request of the same job arrives. Scheduling a set . of jobs
with simply periodic requests denotes specification of which alternate or pri-
mary is to be gxecuted at every time instant. A schedule 1s feasible if all
requests will be satisfied bgfore their deadlinés. The execution of an alter;

nate or primary can be interrupted. Consider the following example: J J

1’ 2
1 2=17, and T2= 50. A schedule 1is

described by a timing diagram such as the following for the above example:

denote jobs with A1=5, P =9, T1=10, A2=7, P

A\ P& Ai Al pz. Pl Pz P\
c 5 IS 20 25 3| yod41 . 50

The execution of P2 is divided into three sections which are scheduled in the

intervals 5-15, 25-31, and 40-41.

Due to the nature -of the primary and alternate algorithms it is desirable
to maximize the number of primaries executed while still ensuring that all
deadlines are met. In the above example, two Pl's and one P2 are executed -

during the period of J2., As the following scheﬁule illustrates, the number of

Page 3

primaries executed in this example can be improved:

)‘! Az. Pl Az PI Az P‘ Pl
0 s 0 h 20 29 20 39 4o 44 %0

In this schedule four Pl’a are executed and idle time 1is scheduled during the
intervals 39-40 and 49~50. This 1s the largest number of primaries which

could be executed in one period of Jz.

SeveralialgOtithms to create schedules for simplified versions of the
real-fime gsystem are developed below. Thé scheduling algorithm of Chapter 2
creates a static schedule fot'thg period Tr which maximizes the number of pri-
maries scheduled. The two algorithms described in Chapter 3 are modifications
of the Chapter 2 algorithm. The first algorithm 4in Chapter 3 creates a
“gtatic fault-tolerant schedule for the period Tr' In this schedule the dead-
line 18 met by the alternate if a scheduled primary fails. The number of
attempted primaries in this schedule is maximized among those schedules which
guarantee that all the deadlines wil} be met. The gecond algorithm in Chapter
3 creates a new schedule whenever idle time is made available during the exe-
cution of the fault-tolerant schedule due to successful primaries. The combi-
nation of these two ‘algorithms yields a dynamic scheduling algorithm maximiz-
ing the number of primaries scheduled while guaranteeing fault~toletagce.
Chapter 4 describes a tree of schedules which may be precomputed and used to

implement the actions of this dynamic algorithm in the real-time system.

Page 4

2 A Scheduling Algorithm.

Given a set of jobs J'{Jl’ J2, ese, Jr} a schedule can be cregted for
the period Tr which will maximize the number of primaries executed given Ai’
Pi’ and Ti for i=1, 2, «..,r. For the moment the possibility of primary
failure 1s 1ignored. An optimal schedule {8 feasible and has the maximum
number of primaries scheduled among all feasible schedules. The schedulé is
produced in three phases. First a set of counters NP(i) is produced which
indicates the number of primaries of each level i 1included in an optimal
schedule. The second phase 1s the production from each NP(1) of a list of

primaries and alternates to be executed for each level. The third phase 1is

the creation of the schedule from these lists.

The values NP(1i) for J = {Jl’ J2, ces, Jr} are created by iteratively
creating the values of NP(i) for the sets {Jl}’ {Jl, Jz}; ses, {Jl’ Jz, ..;,
Jr}' In each case the counters represent a schedule for the period of the

highest level job. ¥or the jobs {Jl,‘J esey Ji} the schedule is created for

2,

the period Ti by concatenating m copies of the schedule for {Jl" Jz, soe,

i-1
Ji-l} and then modifying the resulting schedule.

The entire schedule 1s constructed from the NP(i) values. Consider the

following example. Let A1=6, P1-10, Tl-lo, A2 2 2330, A3-4, P3

T3-60, NP(1)=2, NP(2)=l, and NP(3)=0. The algorithm distributes the lower

-4, P -7, T ’10,

level primaries within the larger periods. Since there are 2 Pls in the entire

schedule and since there are 2 Tzs in T3 eéch T2 includes a Pl

18 80 the Pls must be augmented with Als. The algorithm pro-

N Wicthin each

Tz there'are 3T

duces tuples which represent lists of primaries and alternates for each level.

.In the above example the level 1 tuple, (100100), corresponds to scheduling

Al

Page 5

the sequence PIAIAIPIAIAI at the level 1 request times:

-

[Aq’ it;“:j A, P Ad. E;”<37‘A\i
16 20

o T3 2 20 40 4% S0 56 $0

The level 2 tuple, (10), indicates that Pz and Az are scheduled in the remaine-

ing idle time of the T2 period:

) Av IR AR P, A, [Az] A

o) [T) % ¥ 30 ¥o dbh SO 2 S6 60

Ihe level 3 tuple is (0) indicating that A3 fills the remaining idle time:

e S " - 7
P| A\ pl A, Pﬁg A;] 7 P, A\ AL A' iAB
o 1) 6 F12) b 2930 40 4 . SO S5 Réeo

Algorithm 2.1 constructs an optimal schedule. The algorithm uses a 1list
called the diff 1ist. This list keeps the level numbers i for those values of
1 with NP(1)>0 sorted in decreasing order of Pi'A:x.' Initially the 1list {s
empty. The notation [x] denotes the smallest integegrnot less than x. The

algorithm follows:

Page 6

- Algorithm 2.1

program SCHEDULE (* CREATE AN OPTIMAL SCHEDULE FOR J %)

procedure MODIFY(ALT,PRIM,LEVEL)
(* ADD A LEVEL I RESPONSE TO AN OPTIMAL LEVEL I-1 SCHEDULE
OVER THE LEVEL I PERIOD ¥%)

(* STEP 1- CREATE SPACE FOR ALT *¥)
while idle time < ALT
begin
let d be the first level number in the diff list
k := [(ALT - idle time)/(P4~A,)]
if k 3 NP(d)
then begin
idle time := idle time + NP(d) * (Pd-Ad)
NP(d) = 0 '
remove d from the diff 1list
end
else begin ‘
idle time := 1dle time + k * (Pd—Ad)
NP(d) := NP(d) - k
end
end (* OF STEP 1 ¥)

if PRIM < idle time
then begin

(* STEP 22~ SCHEDULE PRIMARY IF IT FITS *)
idle time := idle time -~ PRIM
NP(LEVEL) := 1
insert LEVEL into the diff list
end (* OF STEP 2a *)

else begin
if diff list is not empty

then begin

(* STEP 2b - EXCHANGE PRIMARIES IF IDLE 1S GAINED *)
let d be the first level number in the diff list
Af PRIM - ALT < Py - A,
then begin
{dle time :=-idle time + Pd - Ad - PRIM
NP(d) := NP(d) - 1
if NP(d) = O then remove d from diff list
NP(LEVEL) := 1 .)
insert LEVEL into diff list
end (* OF STEP 2b *)

else begin

(* STEP 2c~ SCHEDULE ALTERNATE *)
idle time := {idle time - ALT
end (* OF STEP 2c *)
end
end (* of MODIFY %)

begin (* MAIN PROGRAM *)

(* PHASE 1 ~-~ LOOP TO CREATE NP(i) VALUES *)
idle time := Tl

My = 1

for 4 := 1 to r do
NP(i) := 0
for j := 1 to 1i-1 do
NP(3) := NP(J) * m
i-1
end
idle time := idle time * m

MODIFY(A, P, ,1) -1 .)
end
(* PHASE 2 ——- CONVERT COUNTERS INTO SCHEDULE *)

consider each NP(1i) a l-tuple
for 1 := 1 to r-1 do
for j := r-l downto 1 do th
for each element h of the i~ tuple do
t= hmod m ’ '

J

n =k divam,

b

replace h with an mj-tuple. the first k elements of the
tuple are n+l and the remaining elements are n.
- end
end
end

Page 7

Page 8

(* PHASE 3 ~-—— SPECIFY THE SCHEDULE ¥)
for i :=1 to r do
for each element of the level i tuple do

if jth element of level i tuple = 1
then schedule primary for level 1 in the first
Pi units of idle time after (j-l)Ti

else schedule alternate for level 1 in the first
Ai units of idle time after (j-l)’ri

end
end
end (* OF MAIN PROGRAM *)

let Jl, J2, and J3 be jobs such that Al-ﬁ, P1=10, TI-IO, A2=4, P2-7,

v T2=30, A3=4, P3=10, and T3=60. Each time an NP(i) wvalue changes the

corresponding schedule is given below. On the first call to MODIFY P1 is

scheduled since P1=10 £ idle time=10:

A

o] 10

When i=2, 3 copies of the above schedule are concatenated to give:

2 2 P
o 1o 20 30
Step 1 of MODIFY changes a Pl to AI:
| P A,
) 10 . 20 g 30

Since P2=7 > idle time=4 and P2~A2=3 < Pd-Ad=4, one more P1 is changed to A
and P, is scheduled: ‘

R Ay ?s A, A
o T 16 20 ie 2330

Page 9

When i=3, 2 coples of the above schedule are concatenated to give:

-

P, A, P, Al 7 Pi Ay ?g ’A‘j P).
o b 20 2¢ 210 Yo = W4 S0 se 5960
Step 1 of MODIFY changes a P1 to Al:

R A TR A B A A 1r] A B
0 16 te 20 26 2930 36 -4c 46 = SO S¢ 54 60
Since P3=10 > idle time=6 and P3-A3=6 > Pd-Ad=4, A3 is scheduled:

R A‘ Pz A‘ 0'-:‘,_ PJ '\n P} A, F-;_ A\ Px
b 10 e 20 26 2% 30 36 3990 4o SO 6 39 60

Theorem 2.1: The schedule produced by Algorithm 2.1 is optimal and has as much

idle time scheduled as any optimal schedule.
Proof: (by induction on r)

For r=1, the algorithm schedules P. 1f P <T. and schedules A, otherwise.

1 171 1
This 18 clearly optimal and the idle time is maximized among optimal schedules

since all optimal schedules have the same amount of idle time.

Assume that the algorithm produces an optimal schedule with maximum idle

time for any set of p jobs.

Consider the set of jobs J = {Jl, J2, secy Jp+l}' The first p iterations

of the -algorithm produce an optimal schedule for J* = {Jl, Jny eeey Jp} with

2’
maximal idle time. Concatenate mP copies of this schedule and call the result-

ing schedule S. Let t be the number of primaries in S. Clearly S is an

optimal schedule for the jobs in J° over the>period T " Either A

Page 10

is to be added to the schedule.

It is desirable to maximize the number of primaries in the final
schedule. The number of primaries contributed by the jobs in J° camnot exceed

t. At least Ap+1 units of idle time are needed to schedule a response for

J .. If the idle time in S i1s less than A
p+l +

ptl _
schedule for J with t primaries for the jobs in J°. Thus, some of the pri-

then there is no feasible

maries must be changed to alternates so that either Ap+1 or Pp+1 can be

scheduled. By changing those primaries with the largest diff (Pi—Ai) values
first, the number of primaries changed i1s minimum and among such changes the
idle time, when Ap+1 is scheduled, is maximized. Thus if Ap+1 is scheduled an

optimal solution for J has been found.

There are two cases under which Pp+ might be scheduled instead of A

1 p+l’
First, if Pp+l'fits in the time allotted for Ap+l plus the remaining idle time

then clearly this solution is optimal since it includes one more primary than

the solution with Ap+1. Second, if a single‘Pj for j<p+l could be converted

to Aj so that Pb+1 fits into the time allotted for Ap+1 plus the vremaining

idle time plus Pj - Aj and the resulting idle time is greater than the idle
time in the solution with Ap+1' In this case the idle time 1s dincreased and
the numbe; of primaries remains the same. Among such solutions, an optimal
sﬁlution is one such that P_~A, is maximum thus leaving the largest idle time

b |
in the solution for J.

let Mi = mlmznoamio let Mo =],

Page 11

- Theorem 2.2: Algorithm 2.1 creates a schedule for O(ME_ jobs in O(Hr-l)

1)

time.

Proof: Consider the number of jobs scheduled. Clearly there are ﬁimi+1"'mr-1
requests for Ji for i<r and 1 request for Ji. The total number of requests is
r-1 r-1

. 1
120 (Mr_llMi)- Since mi>2 for all i then Mi>2 , thus Mo < 150 (Mr_I/Mi) <
ZMr-l' Thus O(Mr—l) jobs are scheduled.

Consider the time required to create the NP(i) values. The main program
takes. O(rz) steps to initialize the countérs and copy the intermediate solﬁ-
tions. There are r calls to MODIFY. On the 1th such call at most i iterations
of Step 1°s while loo§ are possible. Fach of these iterations takes constant
time. On each call to MODIFY exactly one of the Steps 2a, 2b, and 2c is exe-
cuted. Step 2c requires constant time. Each of the other steps may.involve
an insertion into a 1list of fewer than i elements but otherwise they eéch
require constant time. The insertion requires O0(1) steps. Thus the calls to
MODIFY require'O(rz) steps. Therefo;e O(rz)_steps are needed to create the

NP(i) values.

oo ol = M /H

Transforming NP(;) into the tuple requires -1 -1

B+ 1™442 1

steps. Summing over the values of 1 as before we get O(Mr~l)' Similarly,
convefting the tuples into the schedule reQuires O(Mr-l) time. Thus Algorithm

2.1 requires O(Mi-l) time.

Given a set of jobs J, an algorithm for construction of an optimal
schedule for J has been given. The algorithm builds the schedule iteratively,
one level at a time. Only a few counters are required until the final

schedule 1s to be written out. At this point each of the counters ylelds a

Page 12
sequence of primaries and alternates to be executed. The schedule can then be

constructed from this sequence.

3 A Fault-tolerant Scheduling Algorithm.

Algorithm'z.l produces a schedule to maximize the number of priﬁaries
executed. The primary algorithm ds susceptible to timing errors. In some
cases the actual execution time of the primary is not kﬁown in advance. The
value Pi may be the expected execution time or the minimum execution time of
the primary. The use of Algorithm Z;I»With such primaries can clearly lead to
failure to meet the real-time constraintg. In order to insure a fault-
golerant schedule every request for Ji must be fulfilled by executing either
the alternate or the primary for level i.

It is desirable to guaraﬁtee that the failure of Pi does not inhibit exe-
cution of Ai before the deadline. The following changes to Algorithm 2.1
produce Algorithm 3.1:

1. The call MODIFY(Ai,Pi,i) is replaced by MODIFY(Ai,Pi+Ai,i).

2. Every occurrence of Pd-Ad in MODIFY is replaced by Pd.

3. In Phase 3, ‘primary” 1s replaced by ‘primary followed by alter-

_ nate’ and Pi’ Pr are replaced by Pi+_Ai and P5+Ar’ respectively.
This algorithm creates a schedule maximizing the number of primaries scheduled

with the additional conmstraint that whenever a primary is scheduled its alter-

nate 1s scheduled to follow it.

A schedule is f-t feasible if all requests will be satisfied before their -

deadlines even if no primary algorithms succeed. A schedule is f-t optimal 1if

Page 13
it is f-t feasible and has the maximum number of primaries scheduled among all

f~t feasible schedules.

Theorem 3.1: The schedule produced by Algorithm 3.1 is f-t optimal and has as

much idle time as any f-t optimal schedule.
Pfoof: follows easily from Theorem 2.1.

Theorem 3.2: Algorithm 3.1 creates a f-t schedule for O(Mr-l) jobs in O(Mr-l)

time.
Proof: follows from Theorem 2.1.

let J;, J,, and J, be jobs such that, Aj=4, P =4, Tl-io, A,=5, P, =7,

1 1 2 2
=60. The f-t scheduling algorithm produces the fol-

3

T2=30, A3=6, P.=8, and T

3
lowing schedule:

3

pl "‘l Az ‘P\ Al A’L P\ Al A'1A3 P‘ A\ Azi P\ A\ A}, Al& A3 {
Yo

o L o 4 820 24 B2 3Md 3 44 48 Jo 54 58 &0

As the scheduled jobs are executed assume that at time 4, P1 fails to

complete. Al is then executed and the deadline for Jl at time 10 is met when

A1 completes at time 8. The 2 units from 8 'to 10 are used to begin execution

of A,. At time 10, P

2 begins to execute and succeeds at time l4. The request

1

by J, has been satisfied and thus the time allocated to Al in the interval

1
14~18 can now be set to idle. Algorithm 3.2 can be used to reallocate this

wasted time.

Assume that Pg succeeds at time ts. A new schedule for the interval ts
to Tr is to be created with the maximum number of primar-es scheduled.

Some parts of alternates and primaries on other levels may have already G:sen

Page 14

executed. Consider the following representation of the periodic structure:

4 < D, ' Ds ' , | 3,

‘-R,-J

Rg
% 23 - -

Define EXAi to be the number of time units of Ai already executed during

the current Ji period when Ps succeeds at time ts. Similarly, EXPi is defined

to be the number of time units of Pi already executed. Note that EXAi must be

updated by the system at run time. The next Ji deadline after ts, called D,,

- % . - -) \
{ts/Ti]. T+ Let Ry D,~t_ denote the remaining

time before the next Ji deadline. When Ps succeeds, compute D

can be computed by: D,

4 and Ri for

each level i#s. Between Ri and Di a response to the request for Ji must be
schedu}ed if ;he request has not already been satisfied. This response may be
either a primary followed by an alternate or jusf an alternate. The times
required for these responses are P1+A1-EXA1-EXPi and Ai-EXAi respectively.
From Di to Dr regponses are scheduled as before.

As before, the schedule is c;eated iteratively beginning at the lowest
level. With the exception of 1level r two schedules are created for each
level 1. The first schedule 1is for the interval ts to Di and is built upon

the schedule for the interval t, to D from the previous iteration conca-

i-1.
tenated with CDi--Di_l)/Ti_1 copies of the second schedule at level i-l. This
schedule i3 called SHORTi and SNP(j) denotes the number of j level primaries
in the SHORT solution.. The'second schedule at level 1 is built on my coples
of the second solution at level 1-1. as in the previous algorithm. This
schedule 1s called FULLi_1 and FNP(j) denotes the number of j level primaries.

in the FULL solution. SMODIFY is a copy of MODIFY which creates SHORT

~

Page 15
gsolutions using the SNP(1i) wvalues. FMODIFY creates FULL solutions using

FNP(1).

The following algorithm is executed whenever PQ succeeds:

Algorithm 3.2
EXA_ = A
s

full idle time := '1‘1

for i =1 tor do
FNP(i) 1= ()
finsg = (Di-Di-l)/Ti

for § := 1 to r-1 do
SNP(j) := SNP(j) + fins * FNP(J)
end
short 1dle time := short idle time + fing * full idle time

create SHORTi by SMODIFY(A14EXA1,A1+P1 EXA EXP »1)

£ D <D

.then begin
for J =1 to 1=-1 do

FNP(j) im FNP(J) * m
i-1
end 4
full idle time := full idle time * mi_1
create FULL by FHODIFY(A Pi’i)
end
end

Consider the use of this algorithm in the previous example. Recall that

A =4, P =4, T1-10, A2=5, P2=7, T2=30, A, =6, P =8 and T,.=60. The following

3 3 3
. schedule was produced for these jobs by Algorithm 3.1:

Pl Al A2 P! A! Az 'P‘ ‘\\ *z P\ Ax Az P‘ A\ Az Au Ag;
] 4 -0 - B 0 M 282930 o4 J8 Y0 44 4B 50 MES 60

Page 16

At time 14, P, succeeded 80 s8=], EXA =2 and EXP.=4. All other EXA and EXP

2 1

=60, R,=6, R2-16 and R3-46-

1

values are O, Dl-ZO, D.,=30, D

2 3 1
For { =g = 1, Algorithm 3.2 produces 6 units of IDLE for the SHORT

schedule and the following FULL schedule:

PN
26 24 28 30

For 1 = 2, the schedule sent to SMODIFY is:

1y 20 4 2B 30

Az 2 A
it 13 w0 2H 28 30

The schedule sent to FMODIFY is:

P& At p\ Al PI Atf&
Jo 3% 3% 0 W 4B E5 BN 8 &0

The FULL2 schedule is:

o o
BoLA LA R LA AR A A
30 34 3840 44 48 S0 EBEq 53R 60

For 1 = 3, the schedule sent to SMODIFY is:

. — ——
Aq Pl A\ ‘ P\ A A? i As T,A-t ?9 A\
W8 20 R4 2B 30 34 36 w0 94 48 50 54 S35V 40

by
Y

Page 17

The SHORT3 schedule 1is:

A.l_' ‘AS Pl A 1] A} Pl A\ Az Pl A\ Az p‘ A\ AZ A3
M R 20 24 W30 I4 384 44 4B 0 JIY SBR 60

The net effect of the new algorithm on this example 18 to add the execu-

tion of a Pl in the interval 50-60.

Theorem 3.3: The schedule produced by Algorithm 3.2 18 f-t optimal and has as

much idle time as any f-t optimal schedule.
Proof: follows from Theorem 2.1.
Theorem 3.4: Algorithm 3.2 creates a f-t schedule in O(Mr_l) time.

" Proof: follows from Theorem 2.2.

The reschedule algorithm produces a schedule for the period t, to Dr
which has at least as many primaries scheduled in the period as any other
schedule which guarantees fault-tolerance given that the events occurring

between t0 and ts have already occurred.

In the course of executing the schedule some idle time may be encountered
in the schedule. Consider the following courses of action:
1. swap the idle time with some portion of a higher level task which
is already scheduled.
2. execute part of an unscheduled primary.
Clearly either of these techniques may result in a larger number of primaries

being executed than would result by leaving the time idle. Whether either

Page 18
method does increase the number of primaries depends on the run-time behavior

(1.e. primary successes or failures) of the system.

Consider a situation where idle time is to be filled by either of the
above methods. With method 1 some heuristic must be used to decide which tasks
to swap with the idle time. The heuristic may \use probabilities of primary
success (if they are known), potential saved alternate time, or other measures
to make the decision, but it cannot predict which swapping will result in the
best improvement. With the seéond method a heuristic is needed to decide
among several possible partial executions. It may be useful to use thése
techniques but one - can not predict which of the methods will yield the best

result.

Given a set of jobs J an initial fault-tolerant schedule can be created
by Algoritﬁm 3.1. The jobs can then be executed as acheduied. When a prim%ry
algorithm succeeds a new schedule can be created which may allow more pri-
maries to be executed. In all caseé, the schedule produced includes as many.

primaries as any other schedule which guarantees that the deadlines will be

met.

4 A Real-Time Fault~tolerant Schedule.

Algorithms 3.1 and 3.2 produce desirable schedules, however the execu~-
tion time of the dynamic algorithm would be prohibitive in a real-time system.
A precomputed schedule tree can be used as a real-time fault-tolerant

schedule. The tasks executed in this schedule tree are exactly those executed

by the above algorithms.

Page 19

and J, denote jobs such that A, =2,

1 2 1
P1-3, T1-7 and A2-4, PZ-S, T2-21. ‘The séhedule produced by Algorithm 3.1 is:

Consider the following example: let J

P A "zr?s AALL R LA
) 3 5 * 10 12 14 s 21

The execution of this schedﬁle is simulated with the assumption that the

scheduled primaries always succeed. P1 succeeds at t=3 and Algorithm 3.2 (the

" reschedule algorithm) produces:

A2 [P |A R A
3 F o a2 * 13 9 2

P1 succeeds at t=10 and the reschedule algorithm produces:

P B l1A R
10 " 1+ 14 202}

P1 succeeds at t=17 and the reschedule algorithm produces:

|

718 A

P2 succeeds at t=18. The actually executed schedule 1is:

Ps A 2 P' Pz Pl ‘PZ

) 3 E, o s 13 18 al
th
Use aes<slsz...sk> to denote the actually executed schedule when the 1-
primary succeeds if sisl and fails {f sizo. Thus the above schedule is

aeg<l1l11>. Denote the schedule produced by the reschedule algorithm after a

series <3132;..sk> of successes'and failures with the notation ;es<slsz...sk>.

Note that e will always be] when such a schedule exists. Let res<> denote

Page 20

the initial static schedule.

In the event that the primary failure rate is very low, it is advanta-
geous to use the aes<lll...l> ache&ule as '"the schedule" for the system. This
saves the overhead of rescheduling when a primary succeeds. "Backup" schedules
are necessary to insure fault-tolerance in the unlikely event that a primary

should fail.

Consider the-specific case that P, falls at time t=3 in the above

1
schedule. Using the remainder of the static schedule (res<>) would guarantee
that all deadlines would be met including that for J1 at t=7. On the other
hand, the '"actually executed" schedule aes€0111> from t=3 to t=2]1 could be

used. This would guarantee that all deadlines would be met as long as no

other primary should fail. The aes<0111> schedunle is:

AlAzl R 1A R
3 B 7 e 12 W S al

Note that the last 1 in aes<0111> is superfluous since only 3 primaries are

executed. The following schedule is proposed for the above example:

.
P A, P.l R F P
o 3 ? o 4 PNE~_2l
< N)
APzl P (A R ALK P ' A
3 $ ¥+ 5 T £l o 12 W I+ 21 1+ 19 &4 15 21
¥ <
AL A P, AL ‘ A
o R N i F] I+ A 2] 1+ 18 21
Al ~

T R

Page 21

The schedule at the root of the tree is executed until ; primary fails.
When a primary fails the corresponding schedule in the next level down in the
tree is executed. Using this mechanism, the scheduling can be done in real

time if this tree i3 constructed ahead of time.

If the tree is too large, it is pruned in the following manner: Consider
a node in the tree which i3 the schedule to be executed if a failure occurs at

.time tg in aes<slsz...sk>. If Bp is the rightmost 0 in 88,0+ 5, and 8, 1is

3
the . rightmost 1 in slsz...sp replace . the node with that portion of

I'ES<8182- v 8

the portion of res<> from t, to Dr' The above example could be shortened to:

j> from tg to Dr' If no such p or j exists replace the node with

RFlralrl® 7k
17] 3 3 1o " 3 U8 2l

aAa]» Tala]re [AD [a B |A Al
3 5 ¥ o 12 3 oA o 12 14 3?1 2 I* 12202 B 2

The sons of aes<ll11> have all been replaced. The schedules aes<011>,
aes<101>, aes<l10>, and aes<l110> have been replaced by parts of res<>,
res<l>, res<ll>, and res<lll>, respectively. Execution of this schedule
proceeds the same way as before except that when executing a res schedule the
schedule isiexecuted to the en&-regardlesa of primary failures-. The presence

of alternates in the schedule will maintain fault-tolerance although some time

Page 22

may be wasted executing unnecessary alternates.

Using the mechanism presented in this chapter we can gain the benefits of
the dynamic algorithm in a real-time sysfem. The schedule tree mechanism
schedules exactly the same tasks as scheduled by the Chapter 3 algorithms and
if 1t is too large to store 1t can be pruned to an appropriate size with some

degradation of performance.

5 Summary.

A scheduling algorithm was presented to maximize the number.of primaries
scheduled for a set of jobs with simply periodic requests. A moéification of
the algorithm was givgn which produces a- static fault~tolerant optimal
schedule for the jobs. Another modification of the algorithm was given to
reschedule the remaining time when a primary success creates new 1idle time.
Finally a schedule tree mechanism was described}to gain the benefits of these_

scheduling algorithms in a real~time system.

6 Acknowledesements.

Ve would like to thank Navid A. Plaisted and Robert B. Rolstad for useful

suggzestions.

Page 23

7 References.

{Campbell, et al., 79] Campbell, R. H., K. H. BHorton, and G. G. Belford,
"Simulations of a Fault-Tolerant Deadline Mechanism", Proceedings of the
1979 International Symposium on Fault-Tolerant Computing, June, 1979.

BIBLIOGRAPHIC DATA |1~ Report No. =
SHEET - UIUCDCS~-R-80-1010

3. Recipient’s Accession No.

. Litle and Subtitle

A FAULT-TOLERANT SCHEDULING PROBLEM

5. Report Date
February 1980

6. T

7. Author(s)
A. L. Liestman and R. H. Campbell

8. Performing Organization Repr.

No. p_80-1010

9. Performing Otganization Name and Address
Department of Computer Science
University of Illinois
Urbana, IL 61801

10. Project/Task/Work Unit No.

V1. Contract/Grant No.

NSG 1471

12. Sponsoring Organization Name and Address

National Aeronautical and Space Administration
Hampton, Virginia

13. Type of Report & Period
Covered

technical

14,

1S. Supplementary Notes

16, Abstraces

A real~-time system provides a service which meets a set of specifications
including real-time constraints, It is desirable to guarantee reliability
in a real-time system. Relizbility is a measure of how well the system
conforms to its specifications. One technique used to improve reliability
is. fault-tolerance which incorporates redundancy into the system design.
This redundancy is combined with error detection and error confinement
techniques to prevent isolated failures from causing system failure. A
deadline mechanism [Campbell, et al., 79] has been proposed to provide
fault-tolerance in real-time systems. In this mechanism two independent
algorithms are provided for each service subject to a deadline. An algorithm
produces a fault~tolerant schedule for such a real-time system.

17. Key Words and Documeat Analysis. 17a. Descriptors
scheduling
fault-tolerance

reliability
deadline mechanism

17b. Identifiers /Open-Ended Terms

17e. COSATI Field/Group

18. Availability Stacementc 19.. iccurix)y Class (This 21. No. of Pages
eport
unlimited LNCLASSIFIED 26
0. decurity Class ([his 22, Prce
age
UMNCLASSIFIED

FORM N TIS35 (10-70;

USCOMM-DC 40329-2P71

